Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraaguabis(4,4'-bipyridine)cobalt(II) pyridine-2,6-dicarboxylate tetrahydrate

Guizhi Guan,^a* Yuxiang Gao,^a Lixia Wang^b and Tao Wang^b

^aDepartment of Chemistry, Tonghua Teachers' College, Tonghua 134002, People's Republic of China, and ^bFaculty of Chemistry, Northeast Normal University, Changchun 255049, People's Republic of China Correspondence e-mail: guan_tonghua@yahoo.com.cn

Received 18 September 2007; accepted 19 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.043; wR factor = 0.129; data-to-parameter ratio = 6.9.

In the title compound, $[Co(C_{10}H_8N_2)_2(H_2O)_4](C_7H_3NO_4)$. $4H_2O$, the Co^{II} ion adopts a slightly distorted *trans*-CoN₂O₄ octahedral coordination, arising from two monodentate 4.4'bipyridine molecules and four water molecules. The constituent species interact by way of an extensive network of O- $H \cdots O$ and $O - H \cdots N$ hydrogen bonds. The crystal studied was an inversion twin.

Related literature

For general background, see: Howell et al. (2001).

Experimental

Crystal data

[Co(C10H8N2)2(H2O)4]-(C7H3NO4)·4H2O $M_r = 680.53$ Monoclinic, Cc a = 18.1827 (5) Å b = 6.8537 (10) Å c = 25.1485 (5) Å

 $\beta = 99.398 \ (10)^{\circ}$ V = 3091.9 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.63 \text{ mm}^{-1}$ T = 293 (2) K $0.42\,\times\,0.28\,\times\,0.22$ mm

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.779, \ T_{\max} = 0.875$

5091 measured reflections 3167 independent reflections 2936 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.129$ S = 1.00 3167 reflections 456 parameters 26 restraints	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.58 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), with 1416 Friedel pairs
	with 1416 Friedel pairs
	Flack parameter: 0.65 (4)

Table 1

Se	lect	ed 1	bond	11	lengt	hs ((A	.)	ł
----	------	------	------	----	-------	------	----	----	---

Co1-O4	2.151 (4)	Co1-O1	2.200 (4)
Co1-O2	2.160 (4)	Co1-N1	2.279 (5)
Co1-O3	2.199 (4)	Co1-N3	2.271 (5)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1W \cdots O10^{i}$	0.82 (6)	1.93 (6)	2.728 (6)	162 (7)
$O1 - H2W \cdot \cdot \cdot O5^{ii}$	0.82 (3)	1.96 (2)	2.769 (6)	169 (8)
$O2-H3W \cdot \cdot \cdot O8^{iii}$	0.80 (6)	2.05 (6)	2.843 (8)	173 (8)
$O2-H4W \cdot \cdot \cdot N2^{iv}$	0.81 (3)	2.06 (4)	2.755 (6)	145 (7)
$O3-H5W \cdot \cdot \cdot O7$	0.82 (6)	1.95 (6)	2.772 (6)	176 (10)
$O3 - H6W \cdot \cdot \cdot O8^{v}$	0.816 (11)	2.01 (3)	2.789 (7)	161 (6)
$O4-H7W \cdot \cdot \cdot O5$	0.82 (6)	2.06 (3)	2.826 (7)	155 (7)
$O4-H8W \cdot \cdot \cdot N4^{v}$	0.82 (5)	2.00 (3)	2.769 (6)	155 (7)
$O5 - H9W \cdot \cdot \cdot O9^{i}$	0.81 (4)	2.00 (3)	2.777 (7)	161 (7)
$O5-H10W \cdot \cdot \cdot O7^{vi}$	0.82 (7)	2.01 (6)	2.822 (8)	176 (7)
$O6-H11W \cdot \cdot \cdot O12^{vii}$	0.82 (4)	2.16 (4)	2.825 (6)	137 (6)
O7−H14W···O11	0.82 (3)	1.82 (4)	2.631 (7)	174 (8)
O8−H15W···O10	0.82 (6)	1.96 (7)	2.746 (8)	162 (7)
$O8-H16W \cdot \cdot \cdot O6^{viii}$	0.82 (4)	1.94 (4)	2.747 (9)	172 (8)
O6-H12WO11	0.82 (3)	2.30 (5)	2.933 (7)	135 (7)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) $x, -y + 2, z + \frac{1}{2}$; (iv) $x, -y + 2, z - \frac{1}{2}$; (v) $x, -y + 1, z + \frac{1}{2}$; (vi) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (vii) x, y - 1, z; (viii) $x, -y + 1, z - \frac{1}{2}$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2544).

References

Bruker (2001). SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Howell, R. C., Perez, F. G., Jain, S., Horrocks, W. D., Rheingold, A. L. Jr & Francesconi, L. C. (2001). Angew. Chem. Int. Ed. Engl. 40, 4031-4034.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2601 [doi:10.1107/S1600536807046107]

Tetraaquabis(4,4'-bipyridine)cobalt(II) pyridine-2,6-dicarboxylate tetrahydrate

G. Guan, Y. Gao, L. Wang and T. Wang

Comment

As part of our studies of coordination polymer networks (Howell et al., 2001), the molecular title compound, (I), arose.

The Coⁱⁱ atom is (I) is coordinated by two monodentate 4,4'-bipyridine molecules in the axial sites and four associated water molecules in the equatorial plane with the r.m.s. deviation for the fitted atoms (Co1, O1, O2, O3, O4) being 0.012 Å (Fig. 1, Table 1). The dihedral angle between the N1 and N2 rings is 6.2 (3)°; that between the N3 and N4 rings is 6.9 (3)°.

A network of O-H…O and O-H…N hydrogen bonds (Table 2, Fig. 2) helps to establish the packing for (I).

Experimental

A mixture of cobalt dichloride (0.5 mmol), benzene-1,3-dicarboxylic acid (0.5 mmol), sodium hydroxide (1 mmol), 4,4'bipyridine (0.5 mmol), H₂O (8 ml) and ethanol (8 ml) in a 25-ml Teflon-lined stainless steel autoclave was heated at 453 K for one week, and then cooled to room temperature. Red blocks of (I) were obtained with a yield of 8%. Anal. Calc. for $C_{27}H_{35}CoN_5O_{12}$: C 47.61, H 5.14, N 10.29%; Found: C 47.56, H 5.18, N 10.22%.

Refinement

The H atoms of the water molecule were located from difference density maps and were refined with distance restraints of H···H = 1.38 (2) Å and O—H = 0.82 (2) Å. All other H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}$ of the respective carrier atom.

Figures

Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Fig. 2. The packing in (I) with the O···O and O···N contacts for the hydrogen bonds indicated by dashed lines.

Tetraaquabis(4,4'-bipyridine)cobalt(II) pyridine-2,6-dicarboxylate tetrahydrate

Crystal data

 $[Co(C_{10}H_8N_2)_2(H_2O)_4](C_7H_3NO_4)\cdot 4H_2O$ $F_{000} = 1420$ $M_r = 680.53$ $D_{\rm x} = 1.462 \ {\rm Mg \ m^{-3}}$ Mo Kα radiation Monoclinic, Cc $\lambda = 0.71073 \text{ Å}$ Hall symbol: C -2yc Cell parameters from 3167 reflections *a* = 18.1827 (5) Å $\theta = 1.6 - 25.0^{\circ}$ *b* = 6.8537 (10) Å $\mu = 0.63 \text{ mm}^{-1}$ *c* = 25.1485 (5) Å T = 293 (2) K $\beta = 99.398 \ (10)^{\circ}$ Block, red $0.42\times0.28\times0.22~mm$ $V = 3091.9 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	3167 independent reflections
Radiation source: fine-focus sealed tube	2936 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -19 \rightarrow 21$
$T_{\min} = 0.779, T_{\max} = 0.875$	$k = -8 \rightarrow 4$
5091 measured reflections	$l = -29 \rightarrow 12$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.104P)^2 + 1.0603P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.129$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
3167 reflections	$\Delta \rho_{min} = -0.58 \text{ e } \text{\AA}^{-3}$
456 parameters	Extinction correction: none
26 restraints	Absolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.65 (4)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Col 0.67783 (8) 0.76266 (9) 0.87717 (6) 0.0355 (2) C1 0.6043 (3) 0.8586 (8) 0.9833 (2) 0.0364 (12) H1 0.5597 0.8604 0.9591 0.044* C2 0.7306 (3) 0.8503 (9) 0.9992 (2) 0.0437 (14) H2 0.7757 0.8458 0.9864 0.052* C3 0.7327 (3) 0.8594 (8) 1.0542 (2) 0.0395 (13) H3 0.7782 0.8620 1.0773 0.047* C4 0.6013 (3) 0.8673 (9) 1.0380 (2) 0.0389 (13) H4 0.5556 0.8749 1.0499 0.047* C5 0.6670 (3) 0.8625 (7) 1.1340 (2) 0.0277 (11) C7 0.6017 (3) 0.8496 (9) 1.1560 (2) 0.0444 (14) H7 0.5557 0.8446 1.1335 0.053* C8 0.7334 (3) 0.8700 (10) 1.714 (2) 0.0466* C9 0.7313 (4) 0.8637 (9) 1.2261 (2) 0.461 (14)		x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C10.6043 (3)0.8586 (8)0.9833 (2)0.0364 (12)H10.55970.86040.95910.044*C20.7306 (3)0.8503 (9)0.9992 (2)0.0437 (14)H20.77570.84580.98640.052*C30.7327 (3)0.8594 (8)1.0542 (2)0.0395 (13)H30.77820.86201.07730.047*C40.6013 (3)0.8673 (9)1.0380 (2)0.0389 (13)H40.55560.87491.04990.047*C50.6670 (3)0.8644 (6)1.0746 (2)0.0265 (10)C60.6670 (3)0.8625 (7)1.1340 (2)0.0277 (11)C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.50550.83511.22450.066*C110.6226 (3)0.6274 (10)0.7764 (2)0.4452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7764 (2)0.4459 (14)H110.57770.6284 (10)0.7186 (2)0.0459 (14)H130.79940.6063	Co1	0.67783 (8)	0.76266 (9)	0.87717 (6)	0.0355 (2)
H10.55970.86040.95910.044*C20.7306 (3)0.8503 (9)0.9992 (2)0.0437 (14)H20.77570.84580.98640.052*C30.7327 (3)0.8594 (8)1.0542 (2)0.0395 (13)H30.77820.86201.07730.047*C40.6013 (3)0.8673 (9)1.0380 (2)0.0389 (13)H40.55560.87491.04990.047*C50.6670 (3)0.8644 (6)1.0746 (2)0.0255 (10)C60.6670 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.50500.83511.22450.066*C110.6226 (3)0.6474 (10)0.7764 (2)0.4481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.4300 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.	C1	0.6043 (3)	0.8586 (8)	0.9833 (2)	0.0364 (12)
C20.7306 (3)0.8503 (9)0.9992 (2)0.0437 (14)H20.77570.84580.98640.052*C30.7327 (3)0.8594 (8)1.0542 (2)0.0395 (13)H30.77820.86201.07730.047*C40.6013 (3)0.8673 (9)1.0380 (2)0.0389 (13)H40.55560.87491.04990.047*C50.6670 (3)0.8644 (6)1.0746 (2)0.0265 (10)C60.6670 (3)0.8625 (7)1.1340 (2)0.0271 (11)C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7332 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.55*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.679	H1	0.5597	0.8604	0.9591	0.044*
H20.77570.84580.98640.052*C30.7327 (3)0.8594 (8)1.0542 (2)0.0395 (13)H30.77820.86201.07730.047*C40.6013 (3)0.8673 (9)1.0380 (2)0.0389 (13)H40.55560.87491.04990.047*C50.6670 (3)0.8644 (6)1.0746 (2)0.0265 (10)C60.6670 (3)0.8625 (7)1.1340 (2)0.0277 (11)C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0441 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0448 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0430 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)<	C2	0.7306 (3)	0.8503 (9)	0.9992 (2)	0.0437 (14)
C30.7327 (3)0.8594 (8)1.0542 (2)0.0395 (13)H30.77820.86201.07730.047*C40.6013 (3)0.8673 (9)1.0380 (2)0.0389 (13)H40.55560.87491.04990.047*C50.6670 (3)0.8644 (6)1.0746 (2)0.0265 (10)C60.6670 (3)0.8625 (7)1.1340 (2)0.0277 (11)C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.04452 (14)H110.57700.68700.76880.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79830.055*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6791 (2)0.0261 (10)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)	H2	0.7757	0.8458	0.9864	0.052*
H30.77820.86201.07730.047*C40.6013 (3)0.8673 (9)1.0380 (2)0.0389 (13)H40.55560.87491.04990.047*C50.6670 (3)0.8644 (6)1.0746 (2)0.0265 (10)C60.6670 (3)0.8625 (7)1.1340 (2)0.0277 (11)C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6933 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.63	C3	0.7327 (3)	0.8594 (8)	1.0542 (2)	0.0395 (13)
C40.6013 (3)0.8673 (9)1.0380 (2)0.0389 (13)H40.55560.87491.04990.047*C50.6670 (3)0.8644 (6)1.0746 (2)0.0265 (10)C60.6670 (3)0.8625 (7)1.1340 (2)0.0277 (11)C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	Н3	0.7782	0.8620	1.0773	0.047*
H40.55560.87491.04990.047*C50.6670 (3)0.8644 (6)1.0746 (2)0.0265 (10)C60.6670 (3)0.8625 (7)1.1340 (2)0.0277 (11)C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0430 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C4	0.6013 (3)	0.8673 (9)	1.0380 (2)	0.0389 (13)
C50.6670 (3)0.8644 (6)1.0746 (2)0.0265 (10)C60.6670 (3)0.8625 (7)1.1340 (2)0.0277 (11)C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0442 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0435 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.63390.59370.043*	H4	0.5556	0.8749	1.0499	0.047*
C60.6670 (3)0.8625 (7)1.1340 (2)0.0277 (11)C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.04452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C5	0.6670 (3)	0.8644 (6)	1.0746 (2)	0.0265 (10)
C70.6017 (3)0.8496 (9)1.1560 (2)0.0444 (14)H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0432 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C6	0.6670 (3)	0.8625 (7)	1.1340 (2)	0.0277 (11)
H70.55570.84461.13350.053*C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C7	0.6017 (3)	0.8496 (9)	1.1560 (2)	0.0444 (14)
C80.7334 (3)0.8700 (10)1.1714 (2)0.0467 (14)H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0435 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	H7	0.5557	0.8446	1.1335	0.053*
H80.77900.87941.15940.056*C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C8	0.7334 (3)	0.8700 (10)	1.1714 (2)	0.0467 (14)
C90.7313 (4)0.8637 (9)1.2261 (2)0.0461 (14)H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H140.57770.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	H8	0.7790	0.8794	1.1594	0.056*
H90.77630.86821.24980.055*C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	С9	0.7313 (4)	0.8637 (9)	1.2261 (2)	0.0461 (14)
C100.6052 (4)0.8443 (10)1.2112 (3)0.0553 (17)H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	H9	0.7763	0.8682	1.2498	0.055*
H100.56050.83511.22450.066*C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.58040.63390.59370.043*	C10	0.6052 (4)	0.8443 (10)	1.2112 (3)	0.0553 (17)
C110.6226 (3)0.6744 (10)0.7540 (2)0.0452 (14)H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	H10	0.5605	0.8351	1.2245	0.066*
H110.57700.68700.76580.054*C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.58040.63390.59370.043*	C11	0.6226 (3)	0.6744 (10)	0.7540 (2)	0.0452 (14)
C120.7481 (4)0.6476 (10)0.7726 (2)0.0481 (15)H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.58040.63390.59370.043*	H11	0.5770	0.6870	0.7658	0.054*
H120.79200.64290.79740.058*C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C12	0.7481 (4)	0.6476 (10)	0.7726 (2)	0.0481 (15)
C130.7532 (3)0.6281 (10)0.7186 (2)0.0459 (14)H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	H12	0.7920	0.6429	0.7974	0.058*
H130.79940.60630.70830.055*C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C13	0.7532 (3)	0.6281 (10)	0.7186 (2)	0.0459 (14)
C140.6228 (3)0.6587 (9)0.6993 (2)0.0430 (14)H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	H13	0.7994	0.6063	0.7083	0.055*
H140.57770.65990.67570.052*C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C14	0.6228 (3)	0.6587 (9)	0.6993 (2)	0.0430 (14)
C150.6886 (3)0.6411 (6)0.6791 (2)0.0261 (10)C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	H14	0.5777	0.6599	0.6757	0.052*
C160.6920 (3)0.6373 (6)0.62062 (19)0.0272 (11)C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C15	0.6886 (3)	0.6411 (6)	0.6791 (2)	0.0261 (10)
C170.6269 (3)0.6348 (8)0.5828 (2)0.0359 (12)H170.58040.63390.59370.043*	C16	0.6920 (3)	0.6373 (6)	0.62062 (19)	0.0272 (11)
H17 0.5804 0.6339 0.5937 0.043*	C17	0.6269 (3)	0.6348 (8)	0.5828 (2)	0.0359 (12)
	H17	0.5804	0.6339	0.5937	0.043*
C18 0.7592 (3) 0.6372 (8) 0.6013 (2) 0.0388 (12)	C18	0.7592 (3)	0.6372 (8)	0.6013 (2)	0.0388 (12)
H18 0.8043 0.6375 0.6249 0.047*	H18	0.8043	0.6375	0.6249	0.047*

C19	0.7576 (4)	0.6368 (8)	0.5461 (2)	0.0429 (13)
H19	0.8031	0.6383	0.5337	0.051*
C20	0.6327 (3)	0.6335 (8)	0.5279 (2)	0.0379 (12)
H20	0.5889	0.6318	0.5029	0.045*
C21	0.4269 (3)	0.8255 (8)	0.6808 (2)	0.0369 (12)
C22	0.4210 (3)	0.9008 (7)	0.4797 (2)	0.0329 (10)
C23	0.4286 (6)	0.7341 (6)	0.6267 (4)	0.0317 (8)
C24	0.4309 (3)	0.5329 (7)	0.6202 (2)	0.0372 (11)
H24	0.4319	0.4520	0.6500	0.045*
C25	0.4317 (3)	0.4511 (7)	0.5695 (2)	0.0381 (11)
H25	0.4338	0.3163	0.5658	0.046*
C26	0.4295 (3)	0.5684 (7)	0.5248 (2)	0.0371 (11)
H26	0.4301	0.5125	0.4911	0.044*
C27	0.4265 (4)	0.7722 (7)	0.5299 (3)	0.0321 (14)
N1	0.6684 (2)	0.8477 (6)	0.96340 (16)	0.0301 (10)
N2	0.6678 (3)	0.8514 (6)	1.24685 (19)	0.0403 (11)
N3	0.6852 (2)	0.6725 (6)	0.79132 (17)	0.0325 (10)
N4	0.6963 (3)	0.6345 (6)	0.50961 (18)	0.0367 (11)
N5	0.4265 (3)	0.8515 (7)	0.5801 (2)	0.0432 (11)
01	0.7932 (2)	0.8702 (5)	0.88665 (16)	0.0386 (9)
O2	0.6401 (3)	1.0475 (5)	0.84774 (15)	0.0448 (10)
O3	0.5623 (2)	0.6581 (6)	0.86976 (17)	0.0434 (9)
O4	0.7151 (2)	0.4793 (6)	0.90703 (17)	0.0445 (9)
O5	0.8406 (4)	0.2547 (5)	0.8925 (2)	0.0455 (14)
O6	0.4356 (3)	0.3084 (8)	0.7615 (2)	0.0700 (13)
07	0.4362 (3)	0.8505 (6)	0.81861 (18)	0.0525 (11)
08	0.5140 (4)	0.7287 (7)	0.3640 (3)	0.0559 (16)
09	0.4161 (2)	1.0788 (5)	0.48651 (15)	0.0432 (9)
O10	0.4189 (2)	0.8175 (6)	0.43492 (16)	0.0446 (9)
011	0.4273 (3)	0.7097 (7)	0.72046 (19)	0.0511 (13)
012	0.4261 (2)	1.0060 (6)	0.68432 (16)	0.0459 (9)
H1W	0.825 (3)	0.793 (7)	0.901 (3)	0.069*
H2W	0.804 (4)	0.986 (3)	0.892 (3)	0.069*
H3W	0.607 (3)	1.117 (9)	0.854 (2)	0.069*
H4W	0.645 (4)	1.026 (10)	0.8169 (10)	0.069*
H5W	0.526 (3)	0.715 (8)	0.853 (3)	0.069*
H6W	0.559 (4)	0.5395 (18)	0.870 (3)	0.069*
H7W	0.745 (3)	0.416 (8)	0.893 (3)	0.069*
H8W	0.702 (4)	0.419 (8)	0.932 (2)	0.069*
H9W	0.859 (4)	0.280 (10)	0.9234 (10)	0.069*
H10W	0.867 (4)	0.278 (11)	0.870 (2)	0.069*
H11W	0.415 (4)	0.262 (8)	0.7327 (16)	0.069*
H13W	0.458 (4)	0.956 (5)	0.823 (2)	0.069*
H14W	0.431 (5)	0.813 (9)	0.7873 (10)	0.069*
H15W	0.492 (4)	0.739 (10)	0.3897 (19)	0.069*
H16W	0.487 (3)	0.724 (11)	0.3347 (14)	0.069*
H12W	0.425 (4)	0.422 (4)	0.767 (3)	0.069*

Atomic displacement paramete	$ers(Å^2)$
лютис изрисстени рагатей	лз (Д)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0370 (3)	0.0440 (3)	0.0255 (3)	0.0009 (3)	0.0054 (2)	0.0012 (3)
C1	0.028 (3)	0.057 (3)	0.023 (3)	0.008 (2)	0.001 (2)	-0.005 (2)
C2	0.032 (3)	0.070 (4)	0.030 (3)	-0.007 (3)	0.007 (2)	-0.007 (3)
C3	0.027 (3)	0.068 (3)	0.022 (3)	-0.007 (3)	0.001 (2)	-0.006 (2)
C4	0.030 (3)	0.066 (3)	0.020 (3)	0.003 (3)	0.003 (2)	-0.003 (2)
C5	0.034 (3)	0.027 (2)	0.019 (2)	0.0008 (19)	0.004 (2)	-0.0007 (18)
C6	0.031 (3)	0.029 (2)	0.025 (3)	0.002 (2)	0.009 (2)	-0.0010 (18)
C7	0.031 (3)	0.071 (4)	0.031 (3)	-0.005 (3)	0.006 (2)	-0.005 (3)
C8	0.034 (3)	0.073 (4)	0.034 (3)	0.002 (3)	0.008 (3)	0.000 (3)
C9	0.044 (3)	0.070 (3)	0.025 (3)	0.003 (3)	0.006 (3)	0.002 (3)
C10	0.054 (4)	0.083 (4)	0.034 (3)	-0.008 (3)	0.021 (3)	-0.007 (3)
C11	0.028 (3)	0.084 (4)	0.025 (3)	-0.005 (3)	0.010 (2)	-0.007 (3)
C12	0.038 (3)	0.076 (4)	0.028 (3)	0.014 (3)	0.000 (3)	-0.004 (3)
C13	0.029 (3)	0.079 (4)	0.032 (3)	0.008 (3)	0.010 (2)	-0.010 (3)
C14	0.023 (3)	0.077 (4)	0.027 (3)	-0.001 (3)	-0.002 (2)	-0.006 (3)
C15	0.028 (3)	0.028 (2)	0.022 (3)	0.0014 (19)	0.005 (2)	0.0001 (18)
C16	0.032 (3)	0.025 (2)	0.023 (3)	0.0024 (19)	0.002 (2)	-0.0028 (18)
C17	0.033 (3)	0.057 (3)	0.018 (3)	0.000 (2)	0.005 (2)	-0.003 (2)
C18	0.035 (3)	0.055 (3)	0.028 (3)	0.003 (2)	0.009 (2)	-0.003 (2)
C19	0.043 (3)	0.055 (3)	0.033 (3)	0.001 (3)	0.015 (3)	0.000 (2)
C20	0.037 (3)	0.047 (3)	0.026 (3)	-0.004 (2)	-0.006 (2)	-0.003 (2)
C21	0.028 (3)	0.045 (3)	0.036 (3)	0.006 (2)	0.003 (2)	-0.002 (2)
C22	0.027 (2)	0.041 (2)	0.031 (2)	-0.003 (2)	0.0067 (19)	-0.005 (2)
C23	0.0186 (16)	0.042 (2)	0.033 (2)	0.002 (2)	-0.0011 (14)	0.002 (2)
C24	0.032 (2)	0.041 (2)	0.036 (3)	0.002 (2)	0.000 (2)	0.002 (2)
C25	0.037 (3)	0.029 (2)	0.046 (3)	0.004 (2)	0.001 (2)	-0.002 (2)
C26	0.035 (3)	0.041 (3)	0.034 (3)	-0.001 (2)	0.001 (2)	-0.011 (2)
C27	0.024 (3)	0.036 (3)	0.037 (3)	0.000 (2)	0.005 (2)	-0.007 (2)
N1	0.031 (2)	0.037 (2)	0.021 (2)	-0.0023 (18)	0.0028 (19)	-0.0010 (17)
N2	0.053 (3)	0.042 (2)	0.026 (2)	-0.005 (2)	0.010 (2)	-0.004 (2)
N3	0.034 (2)	0.040 (2)	0.024 (2)	0.0030 (19)	0.0038 (19)	-0.0017 (18)
N4	0.049 (3)	0.041 (2)	0.021 (2)	0.003 (2)	0.009 (2)	-0.0004 (18)
N5	0.033 (2)	0.050 (3)	0.046 (3)	0.003 (2)	0.005 (2)	-0.002 (2)
01	0.035 (2)	0.0408 (17)	0.039 (2)	-0.0036 (16)	0.0040 (17)	0.0008 (16)
02	0.066 (3)	0.044 (2)	0.0266 (19)	0.0210 (19)	0.0154 (18)	0.0088 (17)
O3	0.034 (2)	0.050 (2)	0.045 (2)	-0.0060 (18)	0.0060 (18)	-0.0033 (19)
O4	0.057 (3)	0.045 (2)	0.036 (2)	0.0186 (18)	0.0198 (18)	0.0104 (17)
05	0.047 (3)	0.051 (3)	0.040 (3)	-0.0054 (17)	0.008 (3)	-0.0061 (17)
06	0.087 (4)	0.077 (3)	0.045 (3)	-0.010 (3)	0.009 (2)	-0.014 (2)
07	0.066 (3)	0.049 (2)	0.043 (3)	-0.008 (2)	0.012 (2)	-0.0047 (19)
08	0.056 (4)	0.063 (3)	0.055 (4)	-0.009 (2)	0.028 (3)	-0.015 (2)
09	0.055 (2)	0.0404 (19)	0.0336 (19)	0.0007 (17)	0.0046 (17)	-0.0005 (16)
O10	0.049 (2)	0.055 (2)	0.031 (2)	-0.005 (2)	0.0108 (18)	-0.0114 (18)
011	0.067 (4)	0.061 (2)	0.025 (2)	0.005 (3)	0.006 (2)	0.003 (2)

012	0.054 (2)	0.048 (2)	0.035 (2)	0.0018 (18)	0.0044 (17)	-0.0097 (17)
Geometric parat	meters (Å, °)					
Co1—O4		2.151 (4)	C17-	C20	1.40	02 (8)
Co1—O2		2.160 (4)	C17-	—H17	0.93	300
Co1—O3		2.199 (4)	C18-	—C19	1.38	34 (8)
Co1—O1		2.200 (4)	C18-	—H18	0.93	300
Co1—N1		2.279 (5)	C19-	—N4	1.32	23 (8)
Co1—N3		2.271 (5)	C19-	—H19	0.93	300
C1—N1		1.344 (7)	C20-	—N4	1.31	11 (8)
C1—C4		1.388 (8)	C20-	—H20	0.93	300
C1—H1		0.9300	C21-	O12	1.24	41 (7)
C2—N1		1.326 (7)	C21-	O11	1.27	74 (8)
C2—C3		1.377 (8)	C21-	C23	1.50	03 (11)
С2—Н2		0.9300	C22-	09	1.23	37 (6)
C3—C5		1.377 (7)	C22-	O10	1.25	58 (6)
С3—Н3		0.9300	C22-	—C27	1.52	29 (8)
C4—C5		1.384 (7)	C23-	—C24	1.39	90 (7)
C4—H4		0.9300	C23-	—N5	1.41	16 (10)
C5—C6		1.493 (6)	C24-	—C25	1.39	97 (8)
С6—С7		1.392 (8)	C24-	—H24	0.93	300
C6—C8		1.407 (8)	C25-	C26	1.37	77 (8)
C7—C10		1.380 (9)	C25-	—H25	0.93	300
С7—Н7		0.9300	C26-	—C27	1.40)5 (7)
С8—С9		1.381 (8)	C26-	—H26	0.93	300
C8—H8		0.9300	C27-	—N5	1.37	75 (8)
C9—N2		1.346 (8)	01–	-H1W	0.82	2 (6)
С9—Н9		0.9300	01–	-H2W	0.82	2 (3)
C10—N2		1.329 (9)	02–	-H3W	0.80) (6)
C10—H10		0.9300	02–	-H4W	0.8	l (3)
C11—N3		1.351 (7)	O3—	-H5W	0.82	2 (6)
C11—C14		1.379 (8)	O3—	-H6W	0.81	16 (11)
C11—H11		0.9300	O4—	-H7W	0.82	2 (6)
C12—N3		1.317 (8)	O4—	-H8W	0.82	2 (5)
C12—C13		1.383 (8)	O5—	-H9W	0.8	l (4)
C12—H12		0.9300	O5—	-H10W	0.82	2 (7)
C13—C15		1.413 (8)	O6—	-H11W	0.82	2 (4)
C13—H13		0.9300	O6—	-H12W	0.82	2 (3)
C14—C15		1.380 (8)	07–	-H13W	0.82	2 (5)
C14—H14		0.9300	07–	-H14W	0.82	2 (3)
C15—C16		1.482 (7)	08–	-H15W	0.82	2 (6)
C16—C18		1.387 (8)	08–	-H16W	0.82	2 (4)
C16—C17		1.393 (7)				
O4—Co1—O2		179.6 (2)	C18-		122	.0 (5)
O4—Co1—O3		88.71 (17)	C17-		120	.7 (4)
O2—Co1—O3		91.11 (18)	C16-		118	.7 (5)
O4—Co1—O1		91.40 (17)	C16-	—С17—Н17	120	.6
O2—Co1—O1		88.77 (17)	C20-	—С17—Н17	120	.6

O3—Co1—O1	178.5 (2)	C19—C18—C16	118.4 (5)
O4—Co1—N1	88.11 (16)	C19—C18—H18	120.8
O2—Co1—N1	91.48 (15)	C16-C18-H18	120.8
O3—Co1—N1	86.82 (17)	N4—C19—C18	125.0 (6)
O1—Co1—N1	91.71 (16)	N4—C19—H19	117.6
O4—Co1—N3	91.27 (16)	С18—С19—Н19	117.5
O2—Co1—N3	89.13 (16)	N4—C20—C17	123.9 (5)
O3—Co1—N3	91.97 (17)	N4—C20—H20	118.0
O1—Co1—N3	89.49 (17)	С17—С20—Н20	118.0
N1—Co1—N3	178.66 (19)	O12—C21—O11	124.3 (6)
N1—C1—C4	123.2 (5)	O12—C21—C23	118.8 (5)
N1—C1—H1	118.4	O11—C21—C23	116.8 (5)
C4—C1—H1	118.4	O9—C22—O10	125.3 (5)
N1—C2—C3	124.4 (6)	O9—C22—C27	116.9 (4)
N1—C2—H2	117.8	O10—C22—C27	117.7 (4)
С3—С2—Н2	117.8	C24—C23—N5	117.7 (8)
C2—C3—C5	119.4 (5)	C24—C23—C21	121.6 (7)
С2—С3—Н3	120.3	N5-C23-C21	120.7 (4)
С5—С3—Н3	120.3	C23—C24—C25	120.6 (7)
C5—C4—C1	119.4 (5)	C23—C24—H24	119.7
С5—С4—Н4	120.3	С25—С24—Н24	119.7
C1—C4—H4	120.3	C26—C25—C24	120.6 (5)
C3—C5—C4	117.3 (5)	С26—С25—Н25	119.7
C3—C5—C6	121.0 (5)	С24—С25—Н25	119.7
C4—C5—C6	121.7 (5)	C25—C26—C27	120.1 (5)
C7—C6—C8	115.5 (5)	C25—C26—H26	119.9
C7—C6—C5	122.5 (5)	С27—С26—Н26	119.9
C8—C6—C5	121.9 (5)	N5—C27—C26	118.9 (6)
C10—C7—C6	120.0 (6)	N5-C27-C22	121.4 (4)
С10—С7—Н7	120.0	C26—C27—C22	119.7 (5)
С6—С7—Н7	120.0	C2—N1—C1	116.2 (5)
C9—C8—C6	120.3 (6)	C2—N1—Co1	117.5 (4)
С9—С8—Н8	119.9	C1—N1—Co1	124.9 (3)
С6—С8—Н8	119.8	C10—N2—C9	115.8 (5)
N2—C9—C8	123.6 (6)	C12—N3—C11	115.8 (5)
N2—C9—H9	118.2	C12—N3—Co1	124.3 (4)
С8—С9—Н9	118.2	C11—N3—Co1	119.0 (4)
N2	124.8 (6)	C20—N4—C19	116.6 (5)
N2—C10—H10	117.6	C27—N5—C23	122.1 (5)
С7—С10—Н10	117.6	Co1—O1—H1W	115 (5)
N3—C11—C14	123.6 (5)	Co1—O1—H2W	123 (5)
N3—C11—H11	118.2	H1W—O1—H2W	115 (3)
C14—C11—H11	118.2	Co1—O2—H3W	132 (5)
N3—C12—C13	124.4 (5)	Co1—O2—H4W	95 (5)
N3—C12—H12	117.8	H3W—O2—H4W	120 (3)
C13—C12—H12	117.8	Co1—O3—H5W	125 (5)
C12—C13—C15	120.2 (5)	Co1—O3—H6W	114 (5)
C12—C13—H13	119.9	H5W—O3—H6W	114 (3)
C15—C13—H13	119.9	Co1—O4—H7W	122 (4)

C11—C14—C15	121.2 (5)		Co1—O4—H8W		127 (4)
C11—C14—H14	119.4		H7W—O4—H8W		111 (7)
C15-C14-H14	119.4		H9W—O5—H10W		115 (7)
C14—C15—C13	114.7 (5)		H11W—O6—H12W		116 (7)
C14—C15—C16	123.1 (4)		H13W—O7—H14W		112 (3)
C13-C15-C16	122.2 (5)		H15W—O8—H16W		115 (3)
C18—C16—C17	117.4 (5)				
Hydrogen-bond geometry (Å, °)					
D—H…A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1W···O10 ⁱ		0.82 (6)	1.93 (6)	2.728 (6)	162 (7)
O1—H2W…O5 ⁱⁱ		0.82 (3)	1.96 (2)	2.769 (6)	169 (8)
O2—H3W···O8 ⁱⁱⁱ		0.80 (6)	2.05 (6)	2.843 (8)	173 (8)
O2—H4W…N2 ^{iv}		0.81 (3)	2.06 (4)	2.755 (6)	145 (7)
O3—H5W…O7		0.82 (6)	1.95 (6)	2.772 (6)	176 (10)
O3—H6W…O8 ^v		0.816 (11)	2.01 (3)	2.789 (7)	161 (6)
O4—H7W…O5		0.82 (6)	2.06 (3)	2.826 (7)	155 (7)
$O4$ — $H8W$ ··· $N4^{v}$		0.82 (5)	2.00 (3)	2.769 (6)	155 (7)
O5—H9W…O9 ⁱ		0.81 (4)	2.00 (3)	2.777 (7)	161 (7)
O5—H10W····O7 ^{vi}		0.82 (7)	2.01 (6)	2.822 (8)	176 (7)
O6—H11W…O12 ^{vii}		0.82 (4)	2.16 (4)	2.825 (6)	137 (6)
O7—H14W…O11		0.82 (3)	1.82 (4)	2.631 (7)	174 (8)
O8—H15W…O10		0.82 (6)	1.96 (7)	2.746 (8)	162 (7)
O8—H16W…O6 ^{viii}		0.82 (4)	1.94 (4)	2.747 (9)	172 (8)
O6—H12W…O11		0.82 (3)	2.30 (5)	2.933 (7)	135 (7)

Symmetry codes: (i) *x*+1/2, -*y*+3/2, *z*+1/2; (ii) *x*, *y*+1, *z*; (iii) *x*, -*y*+2, *z*+1/2; (iv) *x*, -*y*+2, *z*-1/2; (v) *x*, -*y*+1, *z*+1/2; (vi) *x*+1/2, *y*-1/2, *z*; (vii) *x*, *y*-1, *z*; (viii) *x*, -*y*+1, *z*-1/2.

